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Abstract

Syntactic adaptation to short-term exposure has been docu-
mented with both single-trial priming and cumulative priming
paradigms. These studies usually involve repeated exposure to
the same structure (e.g. reduced relative clauses), and therefore
it remains open whether people can track context-dependent
regularities through short-term exposure. In the current study,
we present a self-paced-reading experiment that investigates
context-dependent syntactic adaptation by manipulating the
relationship between the animacy feature of the subject NP
(animate vs. inanimate) and the corresponding parse of a verb
following a subject NP. We analyze the results in terms of a
log-linear model for context-dependent syntactic adaptation.
The results suggest that comprehenders can track and adapt to
cue-based distributional regularities, but only when the short-
term regularities are consistent with the long-term ones existent
in their native language.

Keywords: Syntactic adaptation; syntactic priming; context-
dependent adaptation; cue-based regularities; statistical learn-
ing; log-linear models; GPT-3 language model

Introduction

Since the seminal work of Bock (1986), it is widely observed
that speakers tend to reuse the same structure they just experi-
enced, a phenomenon known as syntactic priming. The basic
finding has been consistently replicated in other studies us-
ing different syntactic constructions (Bock, 1986; Scheepers,
2003; Mahowald, James, Futrell, & Gibson, 2016), across lan-
guages (Hartsuiker & Kolk, 1998; Shin & Christianson, 2009),
and in bilingual contexts (Hartsuiker, Pickering, & Veltkamp,
2004). In comprehension, it is also found that comprehenders
adjust their expectations on the possible parses of a string de-
pending on what structure they have parsed earlier (Pickering
& Ferreira, 2008; Tooley & Traxler, 2010). Syntactic prim-
ing is a form of linguistic adaptive behavior to short-term
exposure. It is of interest to psycholinguists for a number of
reasons, one of which is that understanding syntactic priming
provides insights into the mechanism of implicit learning.
Using a cumulative priming paradigm, Fine, Jaeger, Farmer,
and Qian (2013) aim to connect syntactic priming to statistical
learning theory (Saffran, Aslin, & Newport, 1996). The idea
is that syntactic priming results from a short-term shift in the
comprehender’s model of the statistical regularities in the lin-
guistic input. Because the process of online language compre-
hension is related to the incremental predictability of linguistic
objects (Garnsey, Pearlmutter, Myers, & Lotocky, 1997; Mac-
Donald, Pearlmutter, & Seidenberg, 1994; Trueswell, 1996;

Reali & Christiansen, 2007; Hale, 2001; Levy, 2008), a shift in
the comprehender’s probability model will result in character-
istic changes in language processing as reflected in dependent
measures such as reading time.

However, previous studies of syntactic adaptation, either
based on the trial-to-trial or the cumulative priming paradigm,
have been limited in that they usually involve only repeated ex-
posure to the same structure (for example, repeated exposure
to reduced-relative clauses), regardless of any other sources
of linguistic information. The exposure usually modulates the
frequency of a single structure on its own, and thus effectively
raises or lowers the probability of that structure in the com-
prehender’s expectations independent of context. However,
language processing is known to be highly context-dependent:
the processing of a specific structure depends on more than
just its frequency out of context, but is also conditioned on
fine-grained contextual cues (MacDonald et al., 1994). For
example, expectations for a reduced relative clause versus a
main verb are modulated by the animacy of the preceding
noun (Trueswell, Tanenhaus, & Garnsey, 1994).

In this work, through behavioral experiments and computa-
tional modeling, we investigate how short-term adaptation can
modulate the comprehender’s expectations about the statistical
relationship between contextual cues and syntactic structures.
The specific syntactic structure is the reduced-relative clause
garden-path sentences. As shown in (1) below (Fine et al.,
2013), the verb “warned” is temporally ambiguous between
a reduced relative (RR) interpretation (1a) and a main verb
(MYV) interpretation (1b). Due to the high frequency of the
MYV structure in English, upon encountering this ambiguous
verb, the parser would favor the MV interpretation. If the sen-
tence turns out to be an RR structure as in (1a), there will be
increased reading time at the disambiguating main verb “con-
ducted” in (1a). This is known as the garden-path ambiguity
effect (Frazier & Fodor, 1978).

(1) The experienced soldiers...

a ..warned about the dangers conducted the midnight raid.
b ...warned about the dangers before the midnight raid.

Through the lens of the MV/RR ambiguity, we study the rela-
tionship between the animacy feature of a subject NP (Animate
vs. Inanimate) and the parse of the locally ambiguous subject-
verb combination — whether it is interpreted as a MV or RR



structure before disambiguation.

In the remainder of this paper, we first present a self-
paced reading (SPR) experiment whose results suggest that
comprehenders indeed track and adapt to cue-based context-
dependent short-term regularities. But such adaptations only
take place when the short-term regularities are consistent with
people’s long-term knowledge. In the second part of the paper,
we will present a log-linear model for the context-dependent
adaptation effect we observed.

Experiment

In an SPR experiment, we examined whether and how the
garden-path ambiguity of a reduced-relative vs. a main-verb
parse changes after short-term exposure to linguistic materials
in which the relationship between the parse of a verb and
the animacy of the dependent noun was manipulated. The
experiment consists of two blocks: an exposure block and a
testing block. Block 1 (the exposure block) manipulated the
co-occurrence statistics between the animacy feature on the
subject-NP and the MV/RR parse on the verb following the
subject-NP. The experiment was a between-subject design with
three treatment groups. The differences between these groups
lie in the exposure block. As summarized in Table 1, in the
exposure block, Group A read 20 RR sentences with animate
subjects and 20 MVs with inanimate subjects—this mapping is
inconsistent with the long-term regularities present in English,
where RR sentences typically come with an inanimate subject.
In contrast, Group B read 20 RRs with inanimate subjects
and 20 MVs with animate subjects. Group B’s exposure is
consistent with their general long-term experience. Group C
is the control group: participants read 40 filler sentences in the
exposure. Sample stimuli for Block 1 are presented in (2).

Block 2 (the testing block) is identical across all three
groups, where all the participants read 8 ambiguous RRs and
8 unambiguous RCs (4 animate and 4 inanimate for both sen-
tence types). The sample stimuli of Block 2 are presented in
(3), where the critical disambiguating region and the spill-over
region are underlined. The verbs used in Block 2 also appeared
in Block 1.

(2) Sample stimuli in Block 1 (the exposure block)

e Group A
The defendant/ examined/ by the lawyer/ turned out/ to
be/ unreliable. [animate, RR]
The hypothesis/ examined/ the factors/ that/ affected/
hearing. [inanimate, MV]

* Group B
The hypothesis/ examined/ by the scientist/ was not/
widely known. [inanimate, RR]
The defendant/ examined/ the testimony/ carefully/ yes-
terday. [animate, MV]

(3) Sample stimuli in block 2 (the testing block)

* The patient/ examined/ by the doctor/ was diagnosed/
with diabetes. [animate, ambiguous]

e The patient/ that/ was/ examined/ by the doctor/
was diagnosed/ with diabetes. [animate, unambiguous]

* The document/ examined/ by the lawyer/ turned out/ to
be/ unreliable. [inanimate, ambiguous]

e The document/ that/ was/ examined/ by the lawyer/
turned out/ to be/ unreliable. [inanimate, unambiguous]

Predictions If comprehenders can adapt syntactic expecta-
tions towards short-term cue-based distributional regularities,
we expect the garden-path ambiguity effect of Group A to
be weakened for animate subjects and be enhanced for inan-
imate subjects. In contrast, the garden-path effect of Group
B is expected to be enhanced for animate subjects and be
weakened for inanimate subjects. Moreover, according to
the inverse frequency effect observed in previous studies
(Kaschak, Kutta, & Jones, 2011; Reitter, Keller, & Moore,
2011), less frequent structure should induce larger learning
error, resulting in stronger adaptation effect. In our design, the
animacy—parse relationship in Group A is in an opposite direc-
tion to the long-term knowledge of English speakers. This is
expected to be associated with larger learning error compared
to Group B, whose animacy—parse relationship is consistent
with the long-term pattern in English. Therefore, we also ex-
pect the magnitude of the adaptation effect in Group A to be
larger than Group B.

Method

Participants and Procedure 400 native speakers of English
living in the U.S. were recruited via Prolific (University of
xxxx IRB18-0381). They were directed to PCIbex to take the
experiment. Participants were randomly assigned to one of the
three groups. For both blocks, in each trial, the participants
read a sentence in the moving-window SPR paradigm: the sen-
tence was first presented as a series of obscured word/phrase
chunks and the participants pressed the space bar to reveal
one word/phrase at a time. For some trials, the participants
were asked to answer a comprehension question regarding
the sentence they read. The comprehension questions were
aimed at encouraging the participants to stay focused. There
were eight practice trials before the main experiment session
to familiarize participants with the SPR paradigm.

Results and discussion

Participants whose accuracy on comprehension questions was
less than 80% were excluded, yielding a final data set with 122
participants in Group A, 126 in Group B, and 125 in Group
C. Observations with a reading time lower than 100 ms or
higher than 5000 ms were removed. We then further removed
reading times that were more than three standard deviations
away from the mean per region and per condition. The reading
times of Block 2 (the testing block) by condition and by group
are presented in Figure 1.

Figure 2 shows the average garden-path effect, defined as
the reading time for the ambiguous condition minus the un-
ambiguous condition across experimental conditions in the



Table 1: Experiment block design

Group Block 1

Block 2

A 20 Ani-RRs, 20 Inani-MVs
B 20 Inani-RRs, 20 Ani-MVs

4 Ani-RRs, 4 Inani-RRs, 4 Ani-RCs, 4 Inani-RCs, 16 fillers
4 Ani-RRs, 4 Inani-RRs, 4 Ani-RCs, 4 Inani-RCs, 16 fillers
4 Ani-RRs, 4 Inani-RRs, 4 Ani-RCs, 4 Inani-RCs, 16 fillers

C 40 fillers
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Figure 1: Block 2 (testing block) reading times by group and
by animacy. Effects appear in spill-over region of Group B.

spillover region. Visual inspection suggests that the garden-
path effect for animate subjects, compared to the control Group
C, is suppressed in Group A, whereas it is enhanced in Group
B. For inanimate subjects, however, the effect mainly emerges
in Group B with a substantially suppressed garden-path effect.
As we will see, a statistical analysis partially confirms these
observations.
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Figure 2: Human garden-path ambiguity effect (average RT
for ambiguous trials minus unambiguous trials) in self-paced-
reading experiment in the spill-over region by group.

We fit linear mixed-effect models to log-transformed RTs in
the critical disambiguating and the spill-over regions of Block
2, with maximal random effects (Barr, Levy, Scheepers, &

Tily, 2013). We focus on whether the garden-path ambiguity
cued by subject animacy in Group A or B differs from the
control Group C. For the B vs. C comparison, no effects were
found on the disambiguating region. On the spill-over region,
for Group B only, as in Model (4) below, there is an Animacy
X Ambiguity interaction (f = 0.02, p < .01): the ambiguity
effect is significantly reduced for trials with inanimate but not
animate subjects. No such interaction was found for Group C
(B =0.007, p = 0.33). However, we did not find an Animacy
x Ambiguity x Group interaction (ﬁ =0.005, p =0.24) when
the data from B and C are considered together as in Model
(5). We speculate that the lack of three-way interaction could
be due to the low statistical power. We conducted a post-hoc
power analysis targeting the three-way interaction using SIMR
package (Green & MacLeod, 2016) in R. The result shows that
with a small effect size (approximately 20ms), 250 participants
are needed for each group to achieve 80% power to detect the
three-way interaction. For the A vs. C comparison, no relevant
effect was detected on either the disambiguating or the spill-
over region.

(4) Linear mixed-effect model for each individual group

logRT ~ logRT.previous.region + Word.length + Ambi-
guity * Animacy + (1 + Ambiguity * Animacy | Subj)
+ (1 + Ambiguity | Item)

(5) Linear mixed-effect model with group contrasts for A vs. C

and B vs. C

logRT ~ logRT.previous.region + Word.length + Ambi-
guity * Animacy * Group + (1 + Ambiguity * Animacy
| Subj) + (1 + Ambiguity * Group | Item)

The experimental result shows that participants can track
and adapt to cue-based (animacy) context-dependent short-
term regularities, but they only do so when short-term regular-
ities in the exposure phase are consistent with their long-term
knowledge (as shown in Group B). The fact that we did not
observe a reliable adaptation effect in Group A, in which the
regularities in the exposure phase are inconsistent with the
long-term patterns in English, is unexpected from an error-
driven learning mechanism that predicts inverse-frequency
effect. Under this hypothesis, the more unexpected exposure
should lead to larger learning effect, contrary to the findings
from Group A.

Modeling

We present a log-linear model to capture the syntactic adap-
tation effect under the experimental setting introduced in the



previous section. We generate the model-predicted surprisal
of the RR parse, which we then compare with the garden-path
ambiguity observed in our SPR experiment. The model allows
us to quantitatively describe and estimate how short-term ex-
posure in Groups A and B changes the statistical association
strength between animacy and verb parse.

The model

Prior to training in the exposure phase, the probability of RR
parse given that the subject NP is animate can be written in
terms of (i) the overall bias toward the RR parse independent
of context and (ii) the strength of association between animacy
and RR parse, as in Eq. (1). Here, wRR is the long-term
strength of association between animate subject NP and RR

parse and bRR is the long-term bias towards RR parse.
wRR 4 pRR
€ ani
P(RR | cani) =
eWaR‘E+bRR 4 ewgﬁerbMV )
1

1+ e(wgﬁivfwgﬁ)Jr(bvabRR) ’

We propose to represent the adaptation after the training by
adding or subtracting an adaptation term k to the strength of
the corresponding animacy-parse association. This allows us
to study changes in association strength explicitly.! For group
A, the animate subject is mapped to RR parse in the exposure
phase, and the new weights w after adaptation is given by:

Want (A) = Wit +ka ©)
wRR (A) =wRR &y 3)

inani inani —

In contrast, for Group B, we increase the association of RR
with animate subjects, and decrease the association with inani-
mate subjects:

Wan (B) = Wiyt — kg )
Wilil;ni(B) = Wﬁll;ni + kB (5)

Above, we described a log-linear model of the comprehen-
der’s expectations about the statistical regularities in language,
and how these expectations change with exposure. In order to
link this model to reading time data, we use surprisal theory
(Levy, 2008; Hale, 2001), which holds that the reading time
response at word w is proportional to the surprisal of word w
given its preceding context c:

RT < —Inp(w | ¢). (6)

Under some assumptions about our MV/RR experimental ma-
terials, we can derive that the RT difference between the am-
biguous and unambiguous conditions at the disambiguating
word should be proportional to

—Inp(RR | ¢), @)
1Our method differs from the syntactic adaptation model of van

Schijndel and Linzen (2018), where models are fine-tuned to the
exposure materials.

where c is the context for ambiguous condition.? In SPR data,
this effect can be expected to appear in the spill-over region.

Using the log-linear model outlined above, the garden path
effect (ambiguous minus unambiguous RT) before adaptation
for an animate head noun should be given by:

RT effect o< —In p(RR | ¢ypi)

=In (l + ewénﬁb/) ®)

MV RR
ani "W

where we have introduced the notation w/ ; = w ani
for the difference in the strength of association with animacy
for the two parses, and analogously 5’ = bMY — pRR for the
bias term. Eq. (8) holds similarly when the subject noun is
inanimate, using w/, .. After adaptation, the reading time
response given animate subjects for Group A and B is given
in Eq. (9) and (10) respectively;® the equations for inanimate
subjects are given in (11) and (12). The higher the value of
k, the larger the adaptation effect is. Since Group C received
no training in the exposure phase, kc = 0 and its reading time
response should be the same as the long-term regularities

represented in Eq. (8).

RT(A | cani) effect < —In p(RR | cani)

=In(1+ e((WQm—kA)er’) ©)
RT(B | cani) effect < —In p(RR | cani)
=In(1+ E((Wémi+k3>+bl) (10)
RT(A | Cinani) effect o — lnp(RR | Cinani) 11
=In(l1+ 6((Wi,nani+kA>+b/) (1D
RT(B | cinani) effect o< —In p(RR | €inani) (12)

= ln(l + 6((W{nani7k3>+b/)

Simulation

Estimating parameters w' and 5 We estimated the asso-
ciation strength w' and bias b’ parameters for the log-linear
model using a combination of corpus frequencies and the
GPT-3 language model (Brown et al., 2020).

We first estimated the bias b’ based on the structural prob-
ability of a reduced relative clause obtained from the Penn
Treebank (Marcus, Marcinkiewicz, & Santorini, 1993), with
p(RR) = 0.008.* Based on this probability, the bias term was

2The conclusion requires four assumptions: (1) there are at most
two possible parses (MV and RR) for the preceding context c, (2) the
probability of the disambiguating word w is zero under the MV parse,
(3) the probability of the RR parse given the unambiguous context is
1, and (4) the probability of the disambiguating word given the RR
parse is the same for both the ambiguous and unambiguous contexts.

3 Although the proportion of RR parse in the short-term exposure
phase of our experiment is much higher than the long-term linguis-
tic environment of English, since the adaptation effect induced by
the short-term regularities of a particular structure as a whole is be-
yond the scope of the current study, we did not apply an adaptation
coefficient to the bias term b.

4The search query was (NP-SBJ !<< @QVP) $+ @VP for MV
construction (259298 occurrences), and NP-SBJ < (NP $ @VP) for
RR parse (2101 occurrences).



Table 2: Estimates of w' and model-predicted surprisal of RR parse h(RR) by group

A (k=-0.04) B (k=1.81) C(k=0)
Verb wh W A(RRJani) A(RR[inani) h(RR]ani) A(RR]inani) h(RR]ani) A(RR]inani)
examine -1.14 344 0.64 4.40 1.83 2.69 0.62 4.44
follow 1.92 1.24 2.99 2.29 4.72 0.92 2.95 2.33
find - 0.57 - 1.71 - 0.57 0.90 1.74
recommend 1.36 - 2.47 - 4.17 - 244 -1.28
ask 1.62 -1.09 2.71 0.62 4.42 0.14 2.67 0.64
gather - -2.22 - 0.25 - 0.05 -1.21 0.26
report 472 0.60 5.74 1.73 7.51 0.59 5.70 1.77
analyze 086 0.55 2.03 1.70 3.68 0.57 2.00 1.73
accompany - 0.51 - 1.67 - 0.55 -1.52 1.70
separate 1.74  3.27 2.82 4.23 4.54 2.53 2.78 4.27
fund 2.81 243 3.86 3.40 5.61 1.78 3.82 3.44
introduce 193 -1.02 3.00 0.66 4.73 0.15 2.96 0.67
provide -0.81 -0.91 0.80 0.71 2.11 0.16 0.78 0.73
respect 738 413 8.41 5.08 10.18 3.34 8.73 5.12
support 1.44  -0.58 2.54 0.89 4.24 0.22 2.51 0.91
expect 0.74 231 1.93 3.29 3.57 1.69 1.90 3.33
Average 213  1.84 2.27 1.96 3.96 0.71 2.24 1.99

estimated by solving Eq. (13) for &'.

1

RR)= —.
p(RR) b

13)

The animacy-parse association strength w’ was estimated
using the GPT-3 Language Model (LM). This value could not
be estimated from corpus frequencies due to low frequency.
We first generated a LM-predicted garden-path effect for each
verb-animacy combination, and mapped it to the probability
of RR structure given context p(RR | ¢). To do this, we fed
GPT-3 with sentences from the stimuli of the testing block
in our experiment. For each sentence, we generated a suffix
surprisal h(suffix): the preamble that goes before the critical
by-phrase serves as the context ¢ for GPT-3 model, and the
suffix surprisal is the GPT-3 surprisal for the rest of the sen-
tence given this context ¢, which was calculated by summing
up the surprisal progressively generated at each word.> Sen-
tences were paired in the sense that each pair corresponds
to a verb-animacy combination and contains a locally am-
biguous RR and its unambiguous RC counterpart, as in (3).
For each pair, the LM-predicted garden-path effect was taken
as the difference in suffix surprisal between ambiguous RR
and unambiguous RC.® We then mapped this LM-predicted
garden-path effect to the surprisal of RR structure given c,

SWe calculated the suffix surprisal over the entire rest of the
sentence because the GPT-3 language model might not fully disam-
biguate the context at the by-phrase alone.

This procedure gives negative LM-predicted garden-path effects
for some verb—animacy combinations. Therefore, the average cue
weights are obtained from the average LM-predicted garden-path
effect, instead of being calculated by averaging cue weights estimated
individually for each verb.

from which we obtained p(RR | ¢):

—Inp(RR |¢) =h(RR | ¢)
= h(suffix | campig) — h(SUffix | cynambig)-
(14)

Finally, we found the association strength values by solving for
wh,; (and analogously for w/__ .) given the corpus-estimated
value of »’ and the LM-estimated value of p(RR | animate) in

the log-linear model:
P(RR | cani) o< &ani TV (15)

Adaptation coefficient k We estimated the adaptation coef-
ficient k from the empirical data in our SPR experiment.” We
first linked the LM-predicted garden-path effect to the empiri-
cal garden-path effect manifested on reading time through a
conversion factor A:

RT effect = —Aln p(RR | ¢). (16)

The conversion factor A was estimated from our empirical
reading time data in the spill-over region of Group C using
linear regression and the GPT-3 estimate for the probabilities
P(RR | ¢). The estimated A is around 19.82. With this A, we
found the adaptation coefficients k for Group A and Group B
separately by fitting Egs. (9)—(12) to the average reading time

7Since the adaptation effect primarily showed up in the spill-over
region, not the critical region, the estimation of k£ was only based on
the empirical data in the spill-over region. For the same reason, later
in the section of results and discussion, we only compared model-
predicted garden-path effect with the empirical garden-path effect in
the spill-over region.



data in the spill-over region using linear regression. We find
ka = —0.04 and kp = 1.81, indicating a much larger change in
association strength for Group B than Group A. It is worth not-
ing that the adaptation for Group A learned by the model is not
in the same direction as the empirical data: compared to Group
C, the model predicts weakened cue strength for inanimate
subjects, not for animate subjects. This is mainly because,
before adaptation, the difference in LM-predicted garden-path
effect between animate and inanimate subjects is smaller than
the empirical pattern in Group C. In this sense, to fit the em-
pirical garden-path effect in Group A, cue weights need to
change in the opposite direction against what we expected.
However, since the empirical data does not show significant
interaction between animacy and garden-path effect either in
Group A or in Group C, the influence of this unexpected but
very small negative k on Group A should be limited.

= A Animate

=== Alnanimate
B Animate -
B Inanimate

-

Average surprisal of RR parse
~
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Figure 3: Average estimated surprisal with different k values.
k values for Group A and B are marked by vertical dash lines.

We analyzed how the value of k influences the LM-predicted
surprisal of RR. As seen in Figure 3, when k increases, for
Group A, the surprisal of RR increases for inanimate subjects
and decreases for animate subjects. That means, for Group
A, animate subjects become more associated with RR parse,
whereas inanimate subjects become more associated with MV
parse, which is consistent with the short-term distributional
regularities in the exposure phase of our experiment. More-
over, the association between animacy feature and MV/RR
parses is reversed at around k = 0.2, beyond which an animate
subject induces a smaller surprisal for the RR parse. For Group
B, the trend is reversed, such that the surprisal of RR increases
for animate subjects and decreases for inanimate subjects,
indicative of a strengthened association between inanimate
subjects and RR parse.

Results and discussion

For each verb, with the estimated w/, ', and k presented
in the previous section, we generated the model-predicted
garden-path effect, which is the surprisal of RR parse, given
animate and inanimate subjects respectively. The results are
summarized in Table 2.8 We also mapped the model-predicted

8The average model-predicted garden-path effect in Group A and
B was obtained from the average LM-predicted garden-path effect

garden-path effect to reading times based on the conversion
factor A estimated above, as visualized in Figure 4.

A B
& & @ @ &

®
o

@
=]

Model-predicted garden-path (ms)
N S
o o

o

3 @ &
S o 5 o

& §
N N
w @

Figure 4: Model-predicted garden-path effect by group

The result shows that the pattern predicted by our log-linear
model sufficiently fits the empirical garden-path effect shown
in Figure 2. The simulated surprisal predicts a larger garden-
path effect for animate condition than inanimate condition,
showing that the model is able to capture the long-term distri-
butional regularities in English, where the inanimate subject is
more closely linked to RR interpretation, although such differ-
ence between animate and inanimate subjects is smaller than
our SPR data as pointed out above. Similar to our empirical
observation, the model is able to capture an adaptation effect.
After the short-term exposure to sentences where inanimate
subjects are exclusively linked to RR parse (Group B), the
garden-path effect is reduced for inanimate subject and en-
hanced for animate subjects. The adaptation induced by the
exposure to sentences where animate subjects are linked to RR
parse (Group A) is limited, as shown in our SPR data. The ab-
solute value of adaptation coefficient k for Group B (k = 1.81)
is larger than for Group A (k = —0.04), further supporting
the asymmetric adaptation effect magnitude between Group A
and Group B.

Conclusions

To sum up, the current study shows that comprehenders can
track and adapt to cue-based context-dependent short-term
regularities, but possibly in a constrained fashion: we only
found evidence for adaptation when the short-term regularities
are consistent with participants’ long-term knowledge. We
also introduced a log-linear model for the context-dependent
syntactic adaptation. The model quantitatively supports the
asymmetric adaptation effect observable from the empirical
data. Overall, this is indicative of a larger learning difficulty,
at least at the cue-based level, for unexpected short-term regu-
larities, and thus casts questions on proposals of error-driven
learning based on previously observed inverse-frequency ef-
fect, which suggests that more unexpected exposure can lead
to larger learning effect.

before adaptation.
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