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Abstract

Error correction in production and compre-
hension has traditionally been studied sepa-
rately. In real-time communication, however,
correction may not only depend on speaker or
comprehender-internal preferences, but also the
interlocutors’ knowledge of each other’s strate-
gies. We present an integrated computational
framework for error correction in both produc-
tion and comprehension systems. Modeling
error correction as Bayesian inference, we pro-
pose that both speaker and comprehender’s cor-
rection strategies are influenced by their prior
expectations about the intended message and
their knowledge of a noise monitoring model.
Our results indicate that speakers and compre-
henders tend to weigh phonological and seman-
tic cues differently, and these different strate-
gies illuminate the asymmetries and potential
interactions between the two systems.
Keywords: error correction; Bayesian infer-
ence; strategic cue-weighting;

Effective communication hinges on the ability
to detect and correct inevitable errors in real-time:
speakers monitor their overt speech and self-repair
disfluencies on the fly while comprehenders make
corrections to the perceived noisy signal to recover
the speakers’ intended message. Prior work has
found that both speakers and comprehenders are
sensitive to phonological and semantic features in
error monitoring. Whereas comprehenders may be
more likely to correct errors with a change of sur-
face form (Gibson et al., 2013), a speaker’s mon-
itoring system may be differentially sensitive to
combinations of semantic and phonological fea-
tures (Hartsuiker, 2006). Intriguingly, most prior
work on error monitoring and correction has fo-
cused exclusively on either speaker-internal or
comprehender-internal error monitoring processes.
In a communicative context, however, interlocutors
also reason over the state of each other’s knowledge
and beliefs (Frank and Goodman, 2012; Goodman

and Stuhlmiiller, 2012). Consequently, speakers
and listeners may also reason over noise in the com-
munication channel (Bergen and Goodman, 2015),
and adapt their usage to mitigate confusion (Buz
et al., 2016). We develop a unified framework to
investigate the strategic use of phonological and
semantic information in the error correction pro-
cess in both comprehension and production, and
the potential interaction between the two systems.

We formalize error correction as a Bayesian ra-
tional inference about intended message. We learn
weights for phonological and semantic factors in
the model by fitting to naturalistic speech data for
production and to offline reading and editing exper-
iments for comprehension. The results indicate that
speakers and comprehenders tend to use different
strategies to perform error correction, which are
related to inherent asymmetries between produc-
tion and comprehension. Our model sheds light
on strategic cue weighting in error monitoring, and
bridges comprehension and production.

Model Fig. 1 shows an overview of the critical
processes. We model the error correction process
as Bayesian inference (Eq. 1):

p(zi | xp) X p(xi)p(xp | ), (D

where x; is an intended message and x,, is a per-
ceived message. We propose that the decision to
repair is influenced by the prior knowledge of the
intended message as well as a noise model that
approximates how the utterance could be distorted
by noise. We specify this noise monitor model
as a strategic cue weighting of phonological and
semantic distances (Eq. 2):

O (zp, x;) = —[aPhon(z,, z;) + SSem(zp, x;)],
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Figure 1: An overview of model architecture

where Phon is a phonological distance measure
and Sem is a semantic distance measure. The likeli-
hood term in Eq. 1, therefore, yields the probability
that z; will get distorted into x,, due to interference
or perceptual noise (Eq. 3):

e(b(xpvxi)

P(z ,x;) ’
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where C'is the set of possible repairs including the
target x;.

Data We fit the weights « and 3 in the noise
model to production and comprehension data sepa-
rately. For production, we extract utterances with
single-word lexical substitution errors (N = 1024)
from the Fromkin Speech Error database (Fromkin,
2000). The utterances are coded for whether or not
the speaker chose to repair their error. For com-
prehension, we use the human sentence correction
data from Ryskin et al. (2021). The dataset consists
of 480 sentences with either semantic or syntactic
errors at the end of the sentence. Each sentence
is corrected by native English speakers in an of-
fline sentence correction experiment, resulting in
N = 22,041 corrections (Table 1).

Example

it’s cold and CAMP there (not corrected)
it is the question of the HOUR - of the fortnight (corrected)

Production

Comprehension  She saved him from the poison by administering an anecdote

Corrections: antidote, epipen, anecdote

Table 1: Example of stimuli for modeling production
and comprehension-side correction processes

Implementation We estimate the prior probabil-
ity of the intended message P(z;) by masking the

target using XLNet (Yang et al., 2019). We approx-
imate the noise model by computing the semantic
and phonological distance between target z; and
error x,, using pre-trained GloVe embeddings and
phonemic-feature based edit distance respectively.
We fit the production model by choosing weights to
minimize cross entropy loss in predicting ground
truth (whether an error was corrected or not). For
the comprehension model, we minimize the cross-
entropy between model estimated and empirical
probabilistic distribution over corrections.

Results Fig. 2 shows the phonological and se-
mantic weights averaged over 1000 simulations.
A positive weight indicates that a phonologi-
cally/semantically similar error is more likely to be
corrected. We observe an asymmetry in the com-
prehender and speaker a: whereas comprehenders
are more likely to repair phonologically similar
errors, speakers show a show a mild preference
toward correcting phonologically dissimilar errors.
Furthermore, comprehenders and speakers also dif-
fer in the way they weight semantic information.

o
»
o
£
D 5
@
H
] E o
5
©
§
# DO == semeeeemeeoitooooooo-o -
®
2
o
2
2
] .
525 weight
F] @ phonological (alpha)
g @ semantic (beta)
-

Comprehension Production

Dataset

Figure 2: Averaged phonological and semantic weights
for comprehension and production



Particularly, while comprehenders are more likely
to correct semantically dissimilar errors as evinced
by the negative (3, speakers exhibit a preference
toward correcting semantic competitors.

Discussion Our results indicate a key relation-
ship between comprehension and production from
asymmetries of error correction strategies.

We find that a comprehender is less likely to
correct semantically compelling errors. We at-
tribute this to the inaccessibility of the intended
meaning to comprehenders. Given that a seman-
tic competitor could be semantically appropriate
(She saved him from the poison by administering
an antidote/epipen), comprehenders might not be
able to detect the existence of a semantic errors.
As a result, a speaker is incentivized to correct
a semantic competitor. On the other hand, com-
prehenders tend to correct phonologically similar
errors, phonological errors are still noticeable to
comprehenders providing other contextual informa-
tion (She saved him from the poison by administer-
ing an antidote/anecdote). A speaker will therefore
be less motivated to correct phonologically similar
errors given these errors are recoverable for com-
prehenders. This reveals the potential interaction
with the comprehension system: a speaker with
knowledge of the comprehender’s correction model
is motivated to correct errors that a comprehender
is incapable of recovering.

Some findings might be related to characteristics
of the dataset selected. In comprehension dataset,
the errors purposefully introduced at the end of
the sentences occur at the end of the sentence and
comprehenders were explicitly asked to perform
error correction task, which might lead to a high
error correction rate and a particular distribution
of error types. The dataset of speech errors used
for production, on the other hand, is likely to only
include errors that may have been detected by the
annotators. In the future, it is important to con-
struct more parallel datasets in comprehension and
production, and conduct more detailed analysis on
the errors types in the dataset.

In conclusion, we observe an asymmetry in how
speaker and comprehender strategies for correcting
errors. We argue that the strategic use of phonolog-
ical and semantic cues reflect potential interaction
between comprehension and production. Speakers
adopt different error correction strategies based on
their understanding of the comprehenders’ noise
model, and comprehenders weigh phonological and

semantic information differently to deal with infor-
mation inaccessibility.
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